High-dimensional Gaussian model selection on a Gaussian design

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-dimensional Gaussian model selection on a Gaussian design

We consider the problem of estimating the conditional mean of a real Gaussian variable Y = ∑p i=1 θiXi+ ǫ where the vector of the covariates (Xi)1≤i≤p follows a joint Gaussian distribution. This issue often occurs when one aims at estimating the graph or the distribution of a Gaussian graphical model. We introduce a general model selection procedure which is based on the minimization of a penal...

متن کامل

High-Dimensional Gaussian Graphical Model Selection: Tractable Graph Families

We consider the problem of high-dimensional Gaussian graphical model selection. We identify a set of graphs for which an efficient estimation algorithm exists, and this algorithm is based on thresholding of empirical conditional covariances. Under a set of transparent conditions, we establish structural consistency (or sparsistency) for the proposed algorithm, when the number of samples n = ω(J...

متن کامل

Model Selection in Gaussian Regression for High-dimensional Data

We consider model selection in Gaussian regression, where the number of predictors might be even larger than the number of observations. The proposed procedure is based on penalized least square criteria with a complexity penalty on a model size. We discuss asymptotic properties of the resulting estimators corresponding to linear and so-called 2k ln(p/k)-type nonlinear penalties for nearly-orth...

متن کامل

High dimensional Sparse Gaussian Graphical Mixture Model

This paper considers the problem of networks reconstruction from heterogeneous data using a Gaussian Graphical Mixture Model (GGMM). It is well known that parameter estimation in this context is challenging due to large numbers of variables coupled with the degenerate nature of the likelihood. We propose as a solution a penalized maximum likelihood technique by imposing an l1 penalty on the pre...

متن کامل

High dimensional gaussian classification

High dimensional data analysis is known to be as a challenging problem (see [10]). In this article, we give a theoretical analysis of high dimensional classification of Gaussian data which relies on a geometrical analysis of the error measure. It links a problem of classification with a problem of nonparametric regression. We give an algorithm designed for high dimensional data which appears st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

سال: 2010

ISSN: 0246-0203

DOI: 10.1214/09-aihp321